

WA-07-1200

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

7272 Cleanwater Lane, LU-11 • Olympia, Washington 98504 • (206) 753-2353

September 10, 1982

Mr. Don Hendrick Skagit Laboratory Department of Fisheries 302 Sharon Avenue Burlington WA 98233

Dear Mr. Hendrick:

In response to your request to the Department of Ecology, Art Johnson and I conducted a water quality survey of Anderson Creek and nearby surface waters on July 12, 1982. The object of our survey was to determine if water quality problems existed sufficient to make Anderson Creek an unsuitable stream for salmon rearing -- as your observations have suggested.

The enclosed map shows the four stations included in our survey, namely:

- Station #1 Anderson Creek about 100 feet upstream of the Highway 2 bridge
- Station #2 "KOA" trout pond on Anderson Creek (pond water taken directly from Anderson Creek)
- Station #3 Skykomish River upstream of Anderson Creek, at "KOA" camp ground
- Station #4 Proctor Creek immediately downstream of the Highway 2 bridge

Dissolved oxygen (Winkler-azide modification), temperature, and pH were measured in the field at each station. The following parameters were determined on iced samples returned to our Tumwater laboratory and analyzed according to EPA's Manual of Methods for Chemical Analysis of Water and Wastes:

Specific Conductivity	Total Zinc
Turbidity	Total Copper
Total Suspended Solids	Total Nickel
Nitrate	Total Chromium
Nitrite	Total Cadmium
Ammonia	Total Lead
Orthophosphate	Total Arsenic
Total Phosphate	Total Mercury
Total Hardness	

Total Alkalinity

Mr. Don Hendrick September 10, 1982 Page Two

In addition to the above, approximaely 40 liters of water each was collected from Anderson and Proctor creeks and tested for toxicity to rainbow trout in 96-hour bioassays conducted in accordance with WDOE's "General Procedure for Static Basic Acute Fish Toxicity Test". Near the Anderson Creek water sampling site, we also did some electroshocking and made an attempt to collect benthic macroinvertebrates.

The results of our water quality measurements are shown in the attached table. Except for its relatively low temperature (7.5 °C), Anderson Creek was physically and chemically similar to the Skykomish River and Proctor Creek. Anderson Creek was within WDOE Class AA (extraordinary) standards for dissolved oxygen, temperature, and turbidity. The pH in Anderson Creek was below the 6.5 lower limit for Class AA waters but was still within a range suitable for salmonids and other fishes. Dissolved solids (as measured by conductance), suspended solids, and nutrients were low in all waters tested. Neither ammonia nor nitrite approached toxic levels.

Trace metal concentrations were low in Anderson Creek as well as other parts of the drainage and were, for the most part, within EPA criteria for protection of aquatic life shown in the data table. Our laboratory's detection limits for copper, cadmium, lead, and mercury were not sufficiently low to determine if these waters were within EPA's extremely low 24-hour average criteria for these metals. EPA criteria for maximum allowable concentrations of copper, cadmium, and lead were met.

The bioassays on Anderson Creek and Proctor Creek water samples (results enclosed) showed no mortalities. These findings coupled with the physical/chemical data discussed above and the healthy trout population we observed in the KOA camp ground pond, suggest that Anderson Creek water should be no less well suited for salmonids than Proctor Creek, a productive salmon-rearing stream.

We did not, however, observe salmonids or any other species of fish while electroshocking portions of lower Anderson Creek. Juvenile salmon were abundant in Proctor Creek (we did not shock here). Only two chironomids and two caddis fly larvae were retained in three surber samples collected from the gravels of Anderson Creek.

We suspect that the steep gradient and high velocity characteristic of this creek is responsible for its apparent low productivity. As a fisheries biologist, you, of course, would be better able to judge the suitability of this habitat than ourselves. Ed Barber, KOA camp ground manager, told us that Anderson Creek is subject to rapid changes in water level and severe scouring.

In summary, we found nothing in our survey to indicate a water quality problem in Anderson Creek. My only recommendation for additional work

Mr. Don Hendrick September 10, 1982 Page Three

would be to get some more pH measurements in the creek in light of the relatively low pH measured during our survey. Please let me know if you have any questions about our results or if we can be of further assistance.

Sincerely,

Bob Bishop, Environmentalist

Water Quality Investigations Section

RR:cb

Enclosures

Water Quality Sampling Stations for the WDOE Anderson Creek Survey of 12 July8

derson Creek survey conducted July 12, 1982.

Youth WDOE Station #4 Wate 11.4 >9.5 11.0 <16.	Class AA r Quality Standards mg/L 0°C - 8.5	24-hr. Average	Not to Exceed	24-hr. Not to Acute Chro Average Exceed Toxicity Toxi	Chronic
	5 mg/L .0°C - 8.5				Toxicity
	.0°C - 8.5				
	1 8,5				
1 20 0	<5 NTU over background				
F-0-0	ż				
70.0					
0.01					
0.01					
<0.01					
0.01					
16					
28		47	180		
<10		5.6	12		
<20		56	1100		
<10			2200		44
<2		0.012	1.5		
<10		0.75	74		
$\overline{}$			440	40	
<0.2	e de la companya del la companya de	0.00057	0.0017	alphonithean opping depresent of the Alphonithean feeting	у ден бүр — Даний ан ондах адага үйдэгэдээ онд Данийдсэ — Дагаараа

vol. 45, no. 231.

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

7272 Cleanwater Lane, LU-11 • Olympia, Washington 98504 • (206) 753-2353

MEMORANDUM August 9, 1982

To:

Art Johnson, Water Quality Investigations Section

Through: # Ferry Freeman, Laboratory Section Head

From: QC Don Kjosness, Aquatic Biologist, Olympia Environmental Laboratory

Subject: 96-Hour Bioassay Information. Sample from Anderson Creek - Gold Bar, WA

Sample Identification:

Laboratory Reference Number: 82-3441

Date Sample Collected:

July 12, 1982

Date Sample Received:

July 12, 1982

Sample Submitted by:

Art Johnson

Sample Description:

"Mouth". A clear colored liquid.

Test Procedure:

The sample was tested for toxic properties in accordance with the Department of Ecology "General Procedure for Static Basic Acute Fish Toxicity Test".

Test Results:

The test data are tabulated in detail on the following pages.

Test Details:

The sample was tested at full strength (100%).

The test organisms were rainbow trout (Salmo gairdneri). The organism length ranged from 31 to 41 mm, giving a short-to-long ratio of 1:1.3. The average length was 35 mm. The average weight was .61 grams.

Fifteen trout were added to 15 liters of sample/water mixture in each aquarium. This gave a flesh-to-mixture ratio of .6 grams/liter.

The test was started on July 13, 1982 at 1400 hours and completed on July 17. 1982 at 1400 hours.

Conclusions:

Full strength (100%) - 0/30 fish died = 0% mortality. Control - 0/30 fish died = 0% mortality.

DK:cp

Attachments

Date Sample Collected 7-(2-82

ART

Collector Address

GOLD BAR

DATA SHEET FOR STATIC BASIC ACUTE FISH TOXICITY TEST*

Laboratory Dr. Ynspin Tensiner John John John Time 1400 Analyst

> ろれなれる Industry/Toxicant Apad/2/255.M

1400

(SALMO GIALADINERI Time 120 m

Test Organism Rayman

Requirec Test Temperature Range ___

Laboratory Reference	Test Con-	Cane.	ž	Number of Cumulative Deaths	r of Cum Deaths	ulativo		ā	(mg/1)	Dissolved Oxygen (mg/l)	c				рН 25 С				Ter	Temperature (C)	ıre		Frotal (ELGO),		(Telebra)		Conductiv uMHOS/	27.5
Number	S o Z	(mg/I)	0	24	48	72	96	0	24	48	72	96	0	24	34	7.2	96	0	24	84	72	96	o		0	96	0	6
11115-28	16	100%	0	C	0	0	0		9,6	<u>.</u>	3.18.6 6.2	2.9	7.5 7.4		7.4	7.4	7.4	13.1/13.0 12.6/12.6/12.8	130	7.6	12.6	82)	co	2/	57	7	20	M
かっぱん	2.3	100%	0	3	0	0	0	9.7	٩.٢	63 63	8.4 8.1	55	2-219:21 1.21 0.21 1.31 V.7 Y.7 Y.7 Y.7 2.7.7	7.4	<u>,</u> 7,7	7,7	7.4	∑. 	15.0	17.7	2.21	9.7	69	00	62			1
Lowmon	7.	Tap Azo	0	0	0	Ģ	٥	9.6	9.3	53.7	6.8	၁ 0⊘	80 76 74 74	7.4	7.4 -	7.4	7,4	13.6 13.4 13.0 13.0 13.2 44	13.4	3,0	(3.0	18.21	44	4	207	186	071	12
	77	Tor Has 0	0	0	0	С	9	4,4	9.1	33.	1:00	7.8	9.1 3.6 8.1 7.8 7.6 hin 7.4 7.4	7, 1	7.	7.4	74	136 134 (30 130	15.0	5,0	13.0	13.2 44		40		15	13	2
														-														
hooft group of the control of the co																												
																								<u> </u>		-		
																										ļ		
																												l
																												1
Sample Description	4	A CLEAR	۸	9	3200	COLOKRO	J	0,30	S																			
Average Weight		i e	lean Le	Mean Length		35			Longest		7		Shortest	test	W			Ratio (long/short)	hs/guo	ort)	7	311						1 1
Number of organisms per chamber	ns per c	ı	5	Œ	latio of	Ratio of flesh to water	o water	•		و			Con	Comments	15	Ĺ	TINKT,	Ķ										

aguar		rest
Ratio of flesh to water		Method on file with the Department of Ecology: " GENERAL PROCEDURE FOR STATIC BASIC ACUTE FISH TOX CITY TEST
. S		of Ecology:
Number of organisms per chamber		Method on file with the Department of Ecology: GENERAL PROCEDURE FOR STATIC BASIC A
Aumber of orga	anie granden begin de agente de agente	Method on GENERAL

V 10/30 11/30 DATA VERIFIED BY EHW DW

DATE (

ECY 030-1-40

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

7272 Cleanwater Lane, LU-11 • Olympia, Washington 98504 • (206) 753-2353

MEMORANDUM August 9, 1982

To: Art Johnson, Water Quality Investigations Section

Through: Tierry Freeman, Laboratory Section Head

From: Or Don Kjosness, Aquatic Biologist, Olympia Environmental Laboratory

Subject: 96-Hour Rioassay Information. Sample from Proctor Creek - Gold Bar, WA

Sample Identification:

Laboratory Reference Number: 82-3444

Date Sample Collected: July 12, 1982 Date Sample Received: July 12, 1982

Sample Submitted by:

Art Johnson

Sample Description: "Mouth". A clear colored liquid.

Test Procedure:

The sample was tested for toxic properties in accordance with the Department of Ecology "General Procedure for Static Basic Acute Fish Toxicity Test".

Test Results:

The test data are tabulated in detail on the following pages.

Test Details:

The sample was tested at full strength (100%).

The test organisms were rainbow trout (Salmo gairdneri). The organism length ranged from 31 to 41 mm, giving a short-to-long ratio of 1:1.3. The average length was 35 mm. The average weight was .61 grams.

Fifteen trout were added to 15 liters of sample/water mixture in each aquarium. This gave a flesh-to-mixture ratio of .6 grams/liter.

The test was started on July 13, 1982 at 1400 hours and completed on July 17, 1982 at 1400 hours.

Conclusions:

Full strength (100%) - 0/30 fish died = 0% mortality. Control - 0/30 fish died = 0% mortality.

DK:cp

Attachments

Industry/Toxicant P. G. B. C. Low Calif. K.

6060 11.

ART

Collector Address

28-21-6

Date Sample Collected ___

DATA SHEET FOR STATIC BASIC ACUTE FISH TOXICITY TEST*

Laboratory Chympine Frankishining LAS Analyst

KJ052635

Time __ 7-13-82 Beginning: Date

1400 0051

> Time Date 2-17-82

01+021 Test Organism Rayous ou Thou'T Required Test Temperature Range Ending:

(Sound GAIRDNERI

Conductive uMHOS/ 2 20/102 111 0 2 5 96 78 7 57 49 0 17.2 17.2 17.2 18.6 18.2 12.8 12.8 13.0 116 116 7.472-1.2 17.2 13.6 13.2 12.8 12.8 130 116 12 74 1.4 136 13.4 13,0 13.0 132 44 40 96 96938789184801247474174184184180130130144144 0 1.3:1 96 72 Tomperature 24 48 Ratic (long/short) 15/4/TANK 96 72 8.1 7.8 7.6 7.4 7.4 8 25 C Ţ. Comments 24 Shortest 19.7 9.5 9.0 8.6 83 7.2 7.2 0.9 6.6 7.7 0 96 72 J Dissolved Oxygen 19.4 9.1 8.6 φ Ω 6.50 (mg/l) 710017 gest 24 0 0 0 0 0 96 CULORED Number of Cumulative O 0 0 72 0 48 0 \bigcirc 0 C 0 24 0 0 0 C \bigcirc 0 0 CLEAR 0 21 Tost /20 2,00) 22 [108 Hzi 300/ Conc. (mg/t) Sample Description Test Con: tainer No. 92 7 スカスーチ 82-3444 Corner Reference Laboratory Number Num

to water		TOXICITY TEST
15 Ratio of flesh to water	Political designation of the second s	Ecology: C BASIC ACUTE FISH
		Vethod on file with the Department of Ecology: 3
Number of organisms per chamber	n de de la companya del la companya de la companya	Method on file v SENERAL PRO

10/30 > 11/30 DATA VERIFIED BY EHM š

DATE

ECY 030-1-40